Quiz 4: Limits and Continuity

Problem 1 (5 points). The graph of $y=f(x)$ is shown below. (You may recognize it from the previous quiz!)

Specify the intervals on which f is continuous.
Solution: The function f is continuous on the intervals $[-2,0),[0,1)$, and $(1,3]$. Note that it is continuous on these intervals individually. It is not continuous on, say, $[-2,0) \cup[0,1)=[-2,1)$.

Problem 2 (5 points). Find the value of a which makes the function

$$
f(x)= \begin{cases}a x-2 & \text { if } x<\pi \\ \cos (x) & \text { if } x \geq \pi\end{cases}
$$

continuous everywhere, and explain why your choice of a works.
Solution: Regardless of our choice of a, the function f is continuous for all x not equal to π. We need only pick a so that f is continuous at $x=\pi$. We already know that $\lim _{x \rightarrow \pi^{+}} f(x)=\lim _{x \rightarrow \pi^{+}} \cos (x)=\cos (\pi)$ by continuity of $\cos (x)$, so we need only pick a so that

$$
\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{-}}(a x-2)=f(\pi)=\cos (\pi)=-1
$$

This is met if we take $a=1 / \pi$.

Problem 3 (5 points). Prove, using the precise definition of a limit, that

$$
\lim _{x \rightarrow 4}(3 x-12)=0 .
$$

Solution: Given $\epsilon>0$, we want to pick $\delta>0$ such that

$$
0<|x-4|<\delta \Longrightarrow|3 x-12-0|<\epsilon .
$$

Note that we always have

$$
0<|x-4|<\delta \Longrightarrow|3 x-12|=3|x-4|<3 \delta .
$$

Hence if we pick δ so that $3 \delta \leq \epsilon$ for example, we would be done. Indeed, we can just take $\delta=\epsilon / 3$, and then

$$
0<|x-4|<\delta=\epsilon / 3 \Longrightarrow|3 x-12|<\epsilon
$$

as desired.

