Math 1A: Calculus

Quiz 4: Limits and Continuity

Your name:

Discussions 201, 203 // 2018-09-21

Problem 1 (5 points). The graph of y = f(x) is shown below. (You may recognize it from the previous quiz!)

Specify the intervals on which f is continuous.

Solution: The function *f* is continuous on the intervals [-2, 0), [0, 1), and (1, 3]. Note that it is continuous on these intervals *individually*. It is *not* continuous on, say, $[-2, 0) \cup [0, 1) = [-2, 1)$.

Problem 2 (5 points). Find the value of *a* which makes the function

$$f(x) = \begin{cases} ax - 2 & \text{if } x < \pi\\ \cos(x) & \text{if } x \ge \pi \end{cases}$$

continuous everywhere, and explain why your choice of *a* works.

Solution: Regardless of our choice of *a*, the function *f* is continuous for all *x* not equal to π . We need only pick *a* so that *f* is continuous at $x = \pi$. We already know that $\lim_{x\to\pi^+} f(x) = \lim_{x\to\pi^+} \cos(x) = \cos(\pi)$ by continuity of $\cos(x)$, so we need only pick *a* so that

$$\lim_{x \to \pi^{-}} f(x) = \lim_{x \to \pi^{-}} (ax - 2) = f(\pi) = \cos(\pi) = -1.$$

This is met if we take $a = 1/\pi$.

Problem 3 (5 points). Prove, using the precise definition of a limit, that

$$\lim_{x \to 4} (3x - 12) = 0.$$

Solution: Given $\epsilon > 0$, we want to pick $\delta > 0$ such that

 $0 < |x-4| < \delta \implies |3x-12-0| < \epsilon.$

Note that we always have

$$0 < |x - 4| < \delta \implies |3x - 12| = 3|x - 4| < 3\delta.$$

Hence if we pick δ so that $3\delta \leq \epsilon$ for example, we would be done. Indeed, we can just take $\delta = \epsilon/3$, and then

$$0 < |x-4| < \delta = \epsilon/3 \implies |3x-12| < \epsilon$$

as desired.